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Summary 

A nonlinear full waveform inverse algorithm and examples of 
its application have been given by Tarantola (1984) and Lailly 
(1983). This scheme attempts to recover density and com- 
pressibillity as a function of spatial coordinates from seismic 
pressure recordings. The recorded (incoming) pressure wave- 
field is extrapolated backwards in time and used together with 
forward modelling to update estimates of density and com- 
pressibility in an iterative manner. The algorithm will not 
give correct results when using marine seismic data recorded 
along a horizontal array at a single depth. This is due to the 
fact that it is not possible to reconstruct the amplitude and di- 

rection of the incoming wavefleld uniqely, since reflected waves 
conunlng from the free surface above the receiver array will 

give the same pressure as the reflections comming from the 
subsurface below the receivers. 

Their inverse algorithm can however be modlfied by taking 
the direction of the incoming wavefield properly into account. 
One way of doing this is to use measurments of both pressure 

and the normal component of particle velocity, since these two 
measurments will deiine both amplitude and direction of the 
incoming wavefield. This work gives the details of a modified 
algorithm taking these measurments properly into account. It 
is shown by numerical examples that the modified inverse al- 
gorithm gives better results than Tarantola and Lailly’s algo- 

rithm. 

Introduction 

A nonlinear full waveform inverse algorithm and examples of 
its application have been given by Tarantola (1984) and Lailly 
(1983). This scheme attempts to recover density and com- 
pcessibillity as a function of spatial coordinates from seismic 
pressure recordings. The recorded (incoming) pressure wave- 
field is extrapolated backwards in time and used together with 
forward modelling to update estimates of density and com- 
pressibility in an iterative manner. It is important that the 
pressure data is measured in such a way that it is possible to ce- 
construct the incoming wavefield properly. Also, the backward 
extrapolation must be formulated such that the measurments 

are taken properly into account. If this is not the case, t,hen 
the inverse algorithm will fail to give correct results. When 

using marine seismic data recorded along a horizontal array at 
a single depth, it is not possible to reconstruct the amplitude 
and direction of the incoming wavefield uniqely, since waves 
comming from the free surface above the receiver array will 

give the same pressure as the waves comming from the SUlJ- 

surface. Using this kind of recording geometry in conjunction 
with Tarantola and Lailly’s inverse scheme, leads to incorrect 

results. 
Their inverse algorithm can however be modified by taking 

the direction of the incoming wavefield properly into account. 

One way of doing this is to use measurments of both pressure 
and the normal component of particle velocity, since these two 
messurnlents will define both amplitude and direction of the 

incoming wavefield. In the next section it is shown how this 

can be done by changing the objective function of the inverse 
algorithm. 

Inversion 

The ultimate goal of acoustic inverse theory is to recover the 
compressibility n(z) and density p(r) from the measured data. 
In practice one seeks densities and compressibilities (or densi- 
ties and wave velocities) which minimizes the error between 
synthetic seismic data and observed data. 

Assume that recordings of pressure are made on a surface 
(or part of a surface) enclosing the region to be imaged. The 
surface is denoted by S. Using an initial guess of n(w) and 
p(z), synthetic data are generated by forward modelling. The 
synthetic pressure is denoted by p, while the difference between 
the observed pressure and the synthetic pressure at receiver 
position w, is Ap(e,,t). The problem one wants to solve is 
to tind 6(w) and p(a) such that Ap is as small as possible. 
Tarantola (1984) and Lailly (1983) achieved this by minimizing 
the following objective function 

J2 2 )t dS (Ap(m,,t))‘. J / 
One problem associated with the function given by equation 
(1) is that waves arriving at the receiver from above (in a con- 
ventional seismic experiment) give raise to the same pressure 
as those arriving from below the receiver. The strength and 
direction of the incoming wavefield can not be measured coc- 
rectly, leading to degraded results of the inversion. 

What is needed is an objective function taking into account 
both the direction and the amplitude of the incoming waves. 

This can be done by including both pressure and the normal 
component of the particle velocity,u,, in the object function, as 
follows 

J = ; l’dt /dS [+6,(+,,t))’ t (hp(=.,W2] (2) 

Here Au, is the difference between the synthetic normal com- 
ponent of the particle velocity and the observed normal com- 
ponent of particle velocity. A dot denotes time-differentintion. 
The time derivatives are introduced to allow for efficient com- 
putation of the gradient of the objective function with respect 
to density and compressibilit,y. In a marine seismic experiment 
is it difficult to measure both particle velocity and pressure at 
the same depth. lnstead pressure could be measured at two 
(or more) depth levels, and the particle velocity calculated. 

The solution of the minimazation problem is found by an 
iterative procedure (e.g. steepest descent method) 

n(e),+1 = ~,(e)~ t aV.J(iF)u, 

P(r)+1 = p(m)” t aV,J(r),. (3) 

n is a scaling factor chosen to obtain rnpid convergence. The 
above expressions are iterated to give better estimates of the 
density and compressibility for each iteration. 
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2 Improved nonlinear inversion 

The gradients V,J and V,J of the objective funct.ion are 
are given hy 

V,J = f 
J 

T 

dtp(n, t)#(z, f), 
0 

V,J = 
I T 

P2 I 
c/t V$( t, I). Vp(a, t). 

II 

The wavefield 4 is the solution of the equation 

Here Ir(r, t) is a source term equal to 

/t(z,t) = - 
/ 

dS[Ai;(r,,t)~(r, - e) t nAir,,n. V6(r, - z)] 

(7) 
The surface normal is denoted hy n. The source term con- 

sists of a distribution of point sources and dipole sources. The 
strength of the dipoles at any given time and position is given 
hy the normal component of the residual particle velocity. The 
strength of the point sources is given by the residual pressure. 

The objective function of Tarantola (1984) and Lailly (1983) 
leads to expressions for the gradients of J similar to equation 

(5), hut with 4 replaced by a new field $, This field is c.1~ 
solution of the equation 

1 cP$7(x,t) 
--------v (&h/~(e,t)) = /+dSAp(2,~)+-2). 

K(2) at2 

(8) 
I  

The source term consists here of a distribution of point sources 
only,with the residual pressure as the strength of the sources. 

Numerical examples 

In the following the simple problem of reconstructing a point 
diffractor in an otherwise homogenous two dimensional medium 
is considered. Figure 1 shows the “true” model, with the point 
diffractor in the middle of the model. At the top of the model 
was a free surface. A shot was fired at the position indicated 

by a star, and the resulting reflected wavefield was recorded 
with a horisontal receiver array, as indicated in the figure. 
The acoustic wave equations for p and 4 were solved numeri- 
cally with a fast finite difference technique described IJY Hol- 
berg (1987). This tecnique steps the wavefeld forward in time

with a source function as input to gcnerat,e the synthetic pres- 
sure p, and synthetic particle velocity vn. To compute C#I the 
wave equation was solved backwards in time using the resid- 
ual wavefields Ap and Au, as input, data. Figures 2 and 3 
show the reconstruction of t.be diffracl.or after one it.eration of 
the inverse algorithm. For comparision is the corresponding 

result. using the algorithm proposed by Tarantola (1984) and 
Lailly (1983) shown in figures 4 and 5. It is quite clear that 
this method does not perform well, showing large “migration 
smiles”. The reason is simply that there is not enough infor- 
mation in the pressure field recorded at. a receiver array at a 
single depth, to reconstruct, the diffractor. In this particular 
example is the “smile” partly caused hy the ghost reflection 
from the free surface. In order to reconstruct the diffractor, 

directional information contained in the uormal component of 

the particle velocity is also needed. 

Conclusions 

A modification to Tarantola’s (1984) and Lailly’s (1983) non- 
linear inverse algorithm has been given. The modified the- 
ory takes into account both amplitude and direction of the 
incoming (recorded) wavefield, by using both measurment.s of 
pressure and the normal component of the particle velocity. 
Simple numerical experiments show that inversion using both
pressure and particle velocity data gives substantially bett,er 
results than the method of Tarantola (1984) and Lailly (1983). 
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FIG. 1. True diffractor model. FIG. 2. Inversion result after one iteration. FIG. 3. Perspective view of result shown 
in Figure 2. 
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FIG. 4. Inversion result after one iteration 
t$n;l$antola (1994) and Lailly’s (1993) 

FIG. 5. Perspective view of the result 
shown in Figure 3. 
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